中国海光

第16卷 第10期

ThLXXXI、ULXXXIII 离子 2p⁵3l 组态能级及 2p⁵3l-3l' 跃迁波长和振子强度计算

张 同 发 潘 守 甫 (吉林职业师范学院) (吉林大学原子分子物理研究所)

Ralativistic calculation of 2p⁵3l energy levels, transition wavelengths and oscillator strengths between 2p⁵3l-3l' ThLXXXI and ULXXXIII ions

Zhang Tong fa (Jilin Vocational Teachers' College, Changchum)

Pan Shou fu

(Institute of Atomic and Molecular Physics, Jilin University, Changchun)

提要:我们使用相对论多组态 Dirac-Fock 程序计算了 ThLXXXI 和 UL XXXIII 离子的 2 p⁵3l 组态精细结构能级,以及 2 p⁵3l-3l'态跃迁波长和振子强度。 计算结果表明, ThLXXXI、ULXXXIII 离子在激光等离子体中能够产生波长 $\lambda < 0.3$ nm 软 X 射线相干辐射。这是天然最重的稳定元素类氛离子 2 p⁵3l 组态能级 跃 迁所能产生的最短相干辐射波长值。

关键词: 类氖离子, 多组态, Dirac-Fock 程序

一、引言

预言了在 BeI-NeI 的高荷电离化等电 子序列离子中的 2 p^{k-1}3 p-2 p^{k-1}3s 态之间的 跃迁可形成真空紫外和软X射线相干辐射^{C1}。 Vinogradov^{C21}发现并指出了类氖离子可作 为超真空紫外和软X射线激光器工作物质。 之后,类氖离子的实验研究和理论工作受到 人们普遍关注和得到迅猛发展。

本文试图从理论计算上判断天然存在的 最重稳定元素 Th 和 U 类氛离子在激光等离 子体中所产生的相干辐射的最短波长数。该 波长也是这种图像^{[23}的激光可能给出的最短 波长。同时,本文的研究工作还将为类氛等离 子体短波激光器的理论研究提供原子物理参 数数据。此外,近来的研究表明,识别和认定 谱线归属,振子强度的理论值是十分有用的, 为此,本文计算了ThLXXXI和ULXXXIII 离子的振子强度数据。

二、计算方法

本文分别使用 Grant^[3] 的相对论多重组 态 Dirac-Fock (MCDF) 计算程序的最佳化 收稿日期: 1988年2月29日。 能级(OL)模型和广义平均能级 (EAL) 模型 计算了 ThLXXXI 和 ULXXXIII 离子的 $2p^{5}3s(2p^{5}3p(2p^{5}3d(2p^{6})))$ 组态的能级。

最佳能级计算由公式

$$E_{opt} = E_a = \int \psi_a^+(JM) H \psi_a(JM) d\tau$$

= $\sum_{r,s} C_r^*(\alpha) H_{rs} C_s(\alpha)$ (1)
= $C_a^+ H C_a$

给出。式中, $\psi_{\alpha}(JM)$ 是原子态波函数(ASF), 可由总角动量为JM的态 α 的组态波函数 (CSF) $\phi(\gamma, JM)$ 线性组合构成,即

$$\psi_{\alpha}(JM) = \sum_{r=1}^{n_{c}} C_{r}(\alpha) \phi(\nu_{r} JM) \qquad (2)$$

组态波函数可由反对称 j-j 耦合中心场旋量 形成。Hamiltonia 矩阵元由

$$H_{rs} = \int \phi^+(\nu_r JM) H \phi(\nu_s JM) d\tau \quad (3)$$

给定。以上各式的符号规定如下,"+"表示 Hermitian 共轭; "*"表示复数共轭; H 为含 有相对论项的 N 电子体系的标准 Hamiltonia; J 表示总角动量; M 表示总磁量子数; v_r 和 v_s 分别表示不同矩阵元组态波函数的剩 余量子数。 $O_r(\alpha)$ 表示态 α 的混合系数,其中, $r=1, 2, ...n_o$,为组态波函数的个数, $O_r(\alpha)$ 由程序给定,并按变分原理被最佳化。

广义平均能级由公式

$$E_{opt} = \sum W_r H_{rr} / \sum W_s \tag{4}$$

给出。式中, H_r , 表示总角动量 J, 态的对角 Hamiltonia 矩阵元, W, 是该态的对角矩阵 元 H_r 的系数。因其广义平均能级计算是 H_r 矩阵元的权重求和并被最佳化,因此权 重因子通常为 $W_s=2J+1$, 且与 $|J_sM_s>$ 的 状态数相符。

在最佳化能级计算中,核电荷分布除了 $3p(^{1}p_{1}, ^{1}s_{0}, ^{3}p_{1}, ^{3}p_{2})$ 和 $3d(^{1}D_{2}, ^{1}p_{1}, ^{3}D_{2}, ^{3}D_{3})$ 能级计算时使用了 Fermi 两参数核电荷分 布之外,其余的能级计算均选用了点电荷分 布。广义平均能级计算中使用了平均核电荷分布。

本文计算中,引用了 Mckenzie^{[41}的横向 Breit 修正和包括真空极化(V.P)和自能 (S.E)修正的量子电动力学(Q.E.D)修正 程序。有关 MCDF 算法和 Mckenzie 修正程 序的理论和程序问题参阅文献[3~5]。

考虑到原子态波函数的混合系数 $C_r(\alpha)$ 与组态波函数选择有关,且在满足宇称奇偶 性选择条件下,只有总角动量相同的态才具 有明显的混合作用。因此,最佳化能级计算 中, 仅考虑了相对论多重态的混合方式。 在 广义平均能级计算中,由于是对对角化的 Hamiltonia 矩阵元的权重和的最佳化,所 以,混合的组态数计算中作了相应的增加。具 体如下, 计算2p53s组态能级时, 混入了 2 p33d 和 2s2 p63 p 组态。计算 2 p53 p 组态能 级时, 混入 2 p6 2s2 p63d 和 2s2 p63s 组态。计 算2p53d组态能级时,混入2p53s和2s2p63p 组态。计算基态 2 p6 能级时, 混入 2 p53 p、 2s2 p63s 和 2s2 p63d 组态。这种组态混合方式 使计算结果有明显的改善, 尤其是扰动作用 强的 2s2 p63l 组态混合,对能级贡献的数量 级通常在10-2以上。

本文还计算了偶极跃迁波长和振子强度。根据最新发表的物理常数,波长计算公 式由下式

$$\lambda = \frac{9999921.722}{\varepsilon_p - \varepsilon_q} \,\mathrm{nm} \tag{5}$$

给出。 s_p 、 s_a 分别为跃迁的初末态能级值,单位是 cm⁻¹。振子强度 f 用公式

$$f = (303.8/\lambda g) \cdot S \tag{6}$$

计算。式中, g为跃迁能级中较低能级的退 化度, S为跃迁的线强度。在非相对论极限条 件下, 对于 2 p⁵J₁3l jJ-2 p⁵J₁3l'j'J'的跃迁 线强度为^[6]

$$S = s [eR_{\nu'}^{\nu}]^2 \tag{7}$$

式中, [eR,]²是电偶极跃迁截面,

• 59C •

$$s = (2J+1)(2J^{\nu}+1) \begin{cases} j & J & J_1 \\ J^{\nu} & j' & 1 \end{cases}$$
$$\times (2j+1)(2j'+1) \begin{cases} l & j & 1/2 \\ j' & l' & 1 \end{cases} l_{\max}$$

式中, Imax 选用 l 和 l'中的较大值。

三、计算结果与讨论

表1列出了ThLXXXI和ULXXXIII 离子相对论多组态Dirac-Fock最佳化能 级和广义平均能级的2p⁵31组态相对于基态 的能级计算值,单位是 cm⁻¹。能级符号表示 方法除了按惯例的光谱项表示之外,还标注 了 *j*-*j* 耦合关系以示区别。表中给出最佳化 模型和广义平均模型计算的两组能级值,前 者,在考虑相对论组态混合情况下,是由波函 数和混合系数的最佳值计算得出的能级值。 后者,是所有参加计算的组态权重求和的平 均能级值。因此,用最佳化模型计算得到的能 级值要比广义平均模型计算的结果更可靠。 计算结果表明,前者与基态能级差小于后者, 可知,最佳化模型计算结果优于广义平均模 型的计算结果。

表2中列出了跃迁波长和振子强度的计 算值。产生激光相干辐射的3P13P-1P13s跃 迁波长,ThLXXXI离子的波长为~0.8nm, ULXXXIII离子的波长为~0.7 nm。 文献 [7]指出, 能级 ${}^{1}S_{0}3p$ 至 ${}^{1}P_{1}3s$ 或 ${}^{3}P_{1}3s$ 跃迁 有较高的增益,且z较低时,跃迁为1P13s,而 z较高时为 $^{3}P_{1}3s_{0}$ 由于组态混合,能级名称 改变,即由1P1至3P1,与z值增加有关,为 此,我们计算了 ${}^{1}S_{0}3p - {}^{3}P_{1}3s$ 能级跃迁波长, ThLXXXI 离子的波长为0.3010 nm, UL XXXIII 离子波长为 0.2688 nm, 均位于软 X 射线波长区域。由此可知,当用天然存在 的最重稳定元素的类氖离子作为等离子体激 光器工作物质时, 最短的相干辐射波长为 ~0.3nm。显然,这是天然元素类氖离子相 干辐射的最短波长。表2中的波长和振子强 度数据是由最佳化能级数据算出的。

表1	ThLXXXI, ULXXXIII	离子的相对基态 2p61S。	的能级(in em ⁻¹	1)
----	-------------------	----------------	-------------------------	----

(8)

	名 称	称 ThLXX		IXXX	ULXXXIII	
LS	j—j	J	OL_*	EAL **	OL	EAL
3P2	3s(3/2, 1/2)	2	96335165	99380243	99916086	103702109
3P1	3s(3/2, 1/2)	1	96428599	99472702	100012908	103797161
³ P ₀	3s(1/2, 1/2)	0	124630536	127633822	131449749	135184843
$^{1}P_{1}$	3s(1/2, 1/2)	1	124653129	127660581	131471590	135210965
3S1	3p(3/2, 1/2)	1	98056309	101049319	101714908	105435470
3 D ₂	3p(3/2, 1/2)	2	98059762	101053608	101716751	105438078
$^{3}D_{3}$	3p(3/2, 3/2)	3	105941135	108925536	110519363	114238513
3D1	3p(3/2, 3/2)	1	105952739	108934645	110531774	114228530
$^{1}D_{2}$	3p(3/2, 3/2)	2	106083608	109068629	110667151	114376921
3P0	3p(3/2, 3/2)	0	106676513	109703556	111280536	115033272
$^{1}P_{1}$	3p(1/2, 1/2)	1	129090641	129227750	136622755	136835179
1S0	3p(1/2, 1/2)	0	129655595	129803258	137217262	137438188
3P1	3p(1/2, 3/2)	1	137062773	137222940	145553449	145756269
³ P ₂	3p(1/2, 3/2)	2	137064841	137234746	145554955	145768249
³ Po	3d(3/2, 3/2)	0	107612853	110595336	112241428	115948684
3P1	3d(3/2, 3/2)	1	107710379	110694842	112340450	1 1 604969 3
3F3	3d(3/2, 3/2)	3	107690475	110676130	112316846	116027309
3F2	3d(3/2, 3/2)	2	107790823	110776436	112422410	116132749
3F_4	31(3/2, 5/2)	4	109375771	112361874	114181544	117893400
3P2	3d(3/2, 5/2)	2	109459136	112444592	114268496	117979735
1F3	3d(3/2, 5/2)	3	109559920	112545717	114371739	118083276
$^{3}D_{1}$	3d(3/2, 5/2)	1	109844603	112830289	114659874	118373312
$1D_2$	3d(1/2, 3/2)	2	138781549	138941008	147321954	147524528
$^{1}P_{1}$	3d(1/2, 3/2)	1	138994847	139161637	147536706	147745688
$^{3}D_{2}$	3d(1/2, 5/2)	2	140549776	140701220	149273826	149467945
3D3	3d(1/2, 5/2)	3	140570373	140729207	149293785	149495663

* 最佳能级

** 广义平均能级

表 2 ThLXXXI 和 ULXXXIII 离子的跃迁波长和振子强度

1. 24.	跃	迁		ThL	XXXI	ULX	XXIII
LS	j—j	LS	j—j	nm	f	лт	f
\$P2	3s(3/2, 1/2)	$-{}^{3}S_{1}$	3p(3/2, 1/2)	5.8100	0.01518	5.5591	0.01489
		$-{}^{3}D_{2}$	3p(3/2, 1/2)	5.7984	0.01522	5.5535	0.01492
		$-^{3}D_{3}$	3p(3/2, 3/2)	1.0410	0.26886	0.9431	0.28061
		$-{}^{3}D_{1}$	3p(3/2, 3/2)	1.0398	0.01923	0.9420	0.02003
		-170	3n(3/2, 3/2)	1.0258	0.09733	0 9301	0 10159
\$P.	20(2/2 1/2)	_3 <u>S</u> .	2n(2/2, 1/2)	6 1426	0.00179	5 8754	0.00470
	35(3/2, 1/2)		3p(3/2, 1/2)	6 1005	0.00±19	5.0101	0.00975
		-•D2	3p(3/2, 1/2)	0.1305	0.02402	5.8090	0.02355
		$-{}^{3}D_{1}$	3p(3/2, 3/2)	1.0500	0.15890	0.9507	0.16567
		$-1D_2$	3p(3/2, 3/2)	1.0357	0.16131	0.9386	0.16803
		$-{}^{3}P_{0}$	3p 3/2, 3/2)	0.9758	0.06913	0.8875	0.07173
		$-1S_{0}$	3p(1/2, 1/2)	0.3010		0.2688	
³ P ₀	33(1/2, 1/2)	$-{}^{1}P_{1}$	3p(1/2, 1/2)	2.2421	0.07870	1.9331	0.08568
		$-{}^{3}P_{1}$	3p(1/2, 3/2)	0.8044	0.49643	0.7090	0.53164
1P1	3s(1/2, 1/2)	$-1P_{1}$	3p(1/2, 1/2)	2.2535	0.05224	1.9413	0.05692
		-1S0	3p(1/2, 1/2)	1.9990	0.02946	1.7404	0.03175
		-3P1	3p(1/2, 3/2)	0.8058	0.08266	0.7101	0.08854
		$-{}^{3}P_{2}$	3p(1/2, 3/2)	0.8057	0.41357	0.7101	0.44295
³ S ₁	3p(3/2, 1/2)	$-{}^{3}P_{0}$	3d(3/2, 3/2)	1.0464	0.04485	0.9500	0.04680
		$-{}^{3}P_{1}$	3d(3/2, 3/2)	1.0358	0.11360	0.9411	0.11844
		$-{}^{3}F_{2}$	3d(3/2, 3/2)	1.0273	0.11468	0.9339	0.11948
3D2	3p(3/2, 1/2)	$-{}^{3}P_{1}$	3d(3/2, 3/2)	1.0362	0.01909	0.9413	0.01417
		$-{}^{3}F_{3}$	3d(3/2, 3/2)	1.0383	0.19058	0.9434	0.19869
		$-{}^{3}F_{2}$	3d(3/2, 3/2)	1.0276	0.06882	0.9341	0.07171
${}^{3}D_{3}$	3p(3/2, 3/2)	$-{}^{3}F_{3}$	3d(3/2, 3/2)	5.7164	0.00390	5.5633	0.00380
		$-{}^{3}F_{2}$	3d(3/2, 3/2)	5.4063	0.00103	5.2547	0.00101
		$-{}^{3}F_{4}$	3d(3/2, 5/2)	2.9115	0.07844	2.7306	0.07954
		$-{}^{3}P_{2}$	3d(3/2, 5/2)	2.8425	0.00089	2.6673	0.00091
		$-1F_{3}$	3d(3/2, 5/2)	2.7633	0.01291	2.5958	0.01306
³ D ₁	3p(3/2, 3/2)	$-{}^{3}P_{0}$	3d(3/2, 3/2)	6.0236	0.00153	5.8491	0.00150
		$-{}^{3}P_{1}$	3d(3/2, 3/2)	5.6894	0.00065	5.5289	0.00064
		$-{}^{3}F_{2}$	3d(3/2, 3/2)	5.4404	0.00273	5.2892	0.00266
		$-{}^{3}P_{2}$	3d(3/2, 5/2)	2.8519	0.06548	2.6761	0.06636
17	0 (0 (0 0 (0))	$-{}^{3}D_{1}$	3d(3/2, 5/2)	2.5694	0.03159	2.4224	0.03185
102	3p(3/2, 3/2)	-3P1	3d(3/2, 3/2)	6.1471	0.00145	5.9762	0.00141
		- ° 1' 3	3d(3/2, 3/2)	0.2232	0.00125	0.0017	0.00122
		- °F 2	3d(3/2, 3/2)	0.8074	0.00229	0.0971	0.00223
			3d(3/2, 5/2)	2.9025	0.02104	2.110!	0.02133
		1 3 37)	3a(3/2, 5/2) 3a(3/2, 5/2)	2.8700	0.00903	2.0993	0.00006
37.	2 n/2/2 2/2)	=*D1 3P	3a(3/2, 3/2) 3d(3/2, 3/2)	0.6794	0.00204	0 4947	0.00200
-10	3p(3/2, 3/2)	-3D.	31(3/4, 3/4) 32(2/2, 5/2)	9.074	0.00291	9.4547	0.00265
1P.	2m(1/9 1/9)	D1 -1D	3a(3/2, 3/2) 33(1/2, 3/2)	1 0210	0.08070	0.0946	0.00195
-11	<i>op(1/2, 1/2)</i>	$-1P_{2}$	2d(1/2, 3/2)	1.0007	0.04765	0.0163	0.04802
15.	3n(1/2, 1/2)	_1p,	3d(1/2, 3/2)	1.0707	0 26567	0.9690	0.97796
3P1	3p(1/2, 3/2)	-170	3d(1/2, 3/2)	5.8180	0.00080	5.6576	0.00078
	- F (-, -, -, -, -, -, -, -, -, -, -, -, -, -	$-1P_{1}$	3d(1/2, 3/2)	5.1757	0.00451	5.0447	0.00439
		-3Da	3d(1/2, 5/2)	2,8678	0.09293	2.0886	0.09426
8P.	3p(1/2, 3/2)	-1D.	3d(1/2, 3/2)	5,8251	0.00430	5.6593	0.00419
		_1P1	3d(1/2, 3/2)	5.1813	0.00054	5.0460	0.00053
		-3D,	3d(1/2, 5/2)	2.8694	0.00619	2.6890	0.00629
		$-{}^{3}D_{3}$	3d(1/2, 5/2)	2.8526	0.08733	2.6746	0.08858

本文考虑了 ThLXXXI 离子和 UL-XXXIII 离子的作为微扰修正的横向 Breit 修正和包括真空极化(V.P)、自由能(S.E) 的量子电动力学(Q.E.D)修正对能级能量 的贡献值,以及总修正贡献的能量值。 根据 最佳化模型计算结果, 总修正贡献的能量值 占该能级能量的百分数, ThLXXXI 离子为 ~0.26%, ULXXXIII 离子为~0.27%。其 修正作用对波长数据的影响与未修正比较, 结果是使跃迁波长值增加。对 ThLXXXI 离 子的 ${}^{3}P_{1}3s-{}^{1}S_{0}3p$ 态跃迁波长 增加 2.26%, ⁸P₆3 p-³P₁3d 跃迁波长增加3.8%;对 UL-XXXIII离子的 3P13s-1So3p 态跃迁波长增 加为 0.86%, *Po3 p-3P13d 态跃迁波长增加 为4.30%。可见,在计算理论波长时, Breit 和 Q. E. D 修正作用是不可忽略的。我们计 算 CaXI MnXVI 离子时也曾发现, 与实验 值相比, 这些修正项的贡献使理论计算能级 的相对误差降低了1.70%左右。可知,当用 MCDF 理论预言波长值时,必须考虑上述的 修正效应,使得计算值更为精确。

根据^{ES}和其他使用 MCDF 计算的文 献^{ESI},以及我们计算 CaXI_MnXVI 等离子 的理论能级值与实验值比较,相对误差为 0.3~1.4%。可知,用相对论多组态Dirao-Fock 程序计算离子的数据是相当可靠的。因 此,尽管没有实验数据与之比较,我们计算的 ThLXXXI和ULXXXIII离子的数据仍 是可信的。

本计算工作是在 IBM 4381 型计算机上 完成的,在此,对给予我们很大帮助的东北电 力研究院计算中心表示谢意。

参考文献

- 1 R.C. Elton, Appl. Opt., 14(1), 97(1975)
- 2 A.V. Vinogradov et al., Sov. J. Quant. Electr., 7(1), 32(1977)
- 3 I. P. Grant et al., Comput. Phys. Commun., 21(2), 207(1980)
- 4 B. J. Mckenize et al., Comput. Phys. Commun., 21
 (2), 233(1980)
- 5 I. P. Grant, Adv. Phys., 19(82), 747(1970)
- 6 L. I. Sobeiman, Introduction to the theory of atomic spectra (Pergamon. Oxford, 1972), sect. 32
- 7 U. Feldman et al., J. Appl. Phys., 56(9), 24 75 (1984)
- 8 R. R. Haar et al., Physica Scripta, 35 (3), 269 (1987)
- 9 J. A. Cogordon et al., Physica Scripta, 33(5), 406 (1986)